Signatures
In the Transactions Section, you learned how transactions are composed. In this section you will learn how to authorize them.
Before a transaction is sent to the network, it must first be authorized by the sender. Authorization occurs through the addition of a signature to the transaction object. Specifically, a transaction object, when signed, is wrapped in a SignedTxn
object that includes the transaction and a type of signature.
There are three types of signatures:
Single Signatures¶
A single signature corresponds to a signature from the private key of an Algorand public/private key pair.
This is an example of a transaction signed by an Algorand private key displayed with goal clerk inspect
command:
{
"sig": "ynA5Hmq+qtMhRVx63pTO2RpDrYiY1wzF/9Rnnlms6NvEQ1ezJI/Ir9nPAT6+u+K8BQ32pplVrj5NTEMZQqy9Dw==",
"txn": {
"amt": 10000000,
"fee": 1000,
"fv": 4694301,
"gen": "testnet-v1.0",
"gh": "SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=",
"lv": 4695301,
"rcv": "QC7XT7QU7X6IHNRJZBR67RBMKCAPH67PCSX4LYH4QKVSQ7DQZ32PG5HSVQ",
"snd": "EW64GC6F24M7NDSC5R3ES4YUVE3ZXXNMARJHDCCCLIHZU6TBEOC7XRSBG4",
"type": "pay"
}
}
"EW64GC..."
to "QC7XT7..."
on TestNet. The transaction was signed with the private key that corresponds to the "snd"
address of "EW64GC..."
. The base64 encoded signature is shown as the value of the "sig"
field.
Multisignatures¶
When the sender of a transaction is the address of a multisignature account then authorization requires a subset of signatures, equal to or greater than the threshold value, from the associated private keys of the addresses that multisignature account is composed of. See Multisignature Accounts for details on how to configure a multisignature account.
Important
Upon signing, either the signing agent or the transaction needs to know the composition of the multisignature account, i.e. the ordered addresses, threshold, and version.
Here is what the same transaction above would look like if sent from a ⅔ multisig account.
{
"msig": {
"subsig": [
{
"pk": "SYGHTA2DR5DYFWJE6D4T34P4AWGCG7JTNMY4VI6EDUVRMX7NG4KTA2WMDA"
},
{
"pk": "VBDMPQACQCH5M6SBXKQXRWQIL7QSR4FH2UI6EYI4RCJSB2T2ZYF2JDHZ2Q"
},
{
"pk": "W3KONPXCGFNUGXGDCOCQYVD64KZOLUMHZ7BNM2ZBK5FSSARRDEXINLYHPI"
}
],
"thr": 2,
"v": 1
},
"txn": {
"amt": 10000000,
"fee": 1000,
"fv": 4694301,
"gen": "testnet-v1.0",
"gh": "SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=",
"lv": 4695301,
"rcv": "QC7XT7QU7X6IHNRJZBR67RBMKCAPH67PCSX4LYH4QKVSQ7DQZ32PG5HSVQ",
"snd": "GQ3QPLJL4VKVGQCHPXT5UZTNZIJAGVJPXUHCJLRWQMFRVL4REVW7LJ3FGY",
"type": "pay"
}
}
"msig"
struct is added which contains the 3 public addresses ("pk"
), the threshold value ("thr"
) and the multisig version "v"
. This transaction is still unsigned but the addition of the correct "msig"
struct is confirmation that the transaction is "aware" of the fact that the sender is multisig and will have no trouble accepting sub-signatures from single keys even if the signing agent does not contain information about its multisignature properties.
Tip
Adding the "msig"
template to make the transaction "aware" of its multisig sender is highly recommended, particularly in cases where the transaction is signed by multiple parties or offline. Without it, the signing agent would need to have its own knowledge of the multisignature account. For example, goal
can sign a multisig transaction that does not contain an "msig"
template if the multisig address was created within its wallet. On signing, it will add the "msig"
template.
Sub-signatures can be added to the transaction one at a time, cumulatively, or merged together from multiple transactions. Here is the same transaction above, fully authorized:
{
"msig": {
"subsig": [
{
"pk": "SYGHTA2DR5DYFWJE6D4T34P4AWGCG7JTNMY4VI6EDUVRMX7NG4KTA2WMDA",
"s": "xoQkPyyqCPEhodngmOTP2930Y2GgdmhU/YRQaxQXOwh775gyVSlb1NWn70KFRZvZU96cMtq6TXW+r4sK/lXBCQ=="
},
{
"pk": "VBDMPQACQCH5M6SBXKQXRWQIL7QSR4FH2UI6EYI4RCJSB2T2ZYF2JDHZ2Q"
},
{
"pk": "W3KONPXCGFNUGXGDCOCQYVD64KZOLUMHZ7BNM2ZBK5FSSARRDEXINLYHPI",
"s": "p1ynP9+LZSOZCBcrFwt5JZB2F+zqw3qpLMY5vJBN83A+55cXDYp5uz/0b+vC0VKEKw+j+bL2TzKSL6aTESlDDw=="
}
],
"thr": 2,
"v": 1
},
"txn": {
"amt": 10000000,
"fee": 1000,
"fv": 4694301,
"gen": "testnet-v1.0",
"gh": "SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=",
"lv": 4695301,
"rcv": "QC7XT7QU7X6IHNRJZBR67RBMKCAPH67PCSX4LYH4QKVSQ7DQZ32PG5HSVQ",
"snd": "GQ3QPLJL4VKVGQCHPXT5UZTNZIJAGVJPXUHCJLRWQMFRVL4REVW7LJ3FGY",
"type": "pay"
}
}
The two signatures are added underneath their respective addresses. Since 2 meets the threshold, this transaction is now fully authorized and can be sent to the network.
Info
Adding more sub-signatures than the threshold requires is unnecessary but perfectly valid.
How-To
Extend the example from the Multisignature Account section by creating, signing, and sending a transaction from a multisig account on TestNet.
const signerAccounts: algosdk.Account[] = [];
signerAccounts.push(algosdk.generateAccount());
signerAccounts.push(algosdk.generateAccount());
signerAccounts.push(algosdk.generateAccount());
// multiSigParams is used when creating the address and when signing transactions
const multiSigParams = {
version: 1,
threshold: 2,
addrs: signerAccounts.map((a) => a.addr),
};
const multisigAddr = algosdk.multisigAddress(multiSigParams);
console.log('Created MultiSig Address: ', multisigAddr);
const msigTxn = algosdk.makePaymentTxnWithSuggestedParamsFromObject({
from: multisigAddr,
to: funder.addr,
amount: 100,
suggestedParams,
});
// First signature uses signMultisigTransaction
const msigWithFirstSig = algosdk.signMultisigTransaction(
msigTxn,
multiSigParams,
signerAccounts[0].sk
).blob;
// Subsequent signatures use appendSignMultisigTransaction
const msigWithSecondSig = algosdk.appendSignMultisigTransaction(
msigWithFirstSig,
multiSigParams,
signerAccounts[1].sk
).blob;
await client.sendRawTransaction(msigWithSecondSig).do();
await algosdk.waitForConfirmation(client, msigTxn.txID().toString(), 3);
version = 1 # multisig version
threshold = 2 # how many signatures are necessary
# create a Multisig given the set of participants and threshold
msig = transaction.Multisig(
version,
threshold,
[account_1.address, account_2.address, account_3.address],
)
print("Multisig Address: ", msig.address())
msig_pay = transaction.PaymentTxn(
msig.address(),
sp,
account_1.address,
0,
close_remainder_to=account_1.address,
)
msig_txn = transaction.MultisigTransaction(msig_pay, msig)
msig_txn.sign(account_2.private_key)
msig_txn.sign(account_3.private_key)
txid = algod_client.send_transaction(msig_txn)
result = transaction.wait_for_confirmation(algod_client, txid, 4)
print(
f"Payment made from msig account confirmed in round {result['confirmed-round']}"
)
int version = 1; // no other versions at the time of writing
int threshold = 2; // we're making a 2/3 msig
// Populate a list of Ed25519 pubkeys
List<Ed25519PublicKey> accts = new ArrayList<>();
accts.add(addr1.getEd25519PublicKey());
accts.add(addr2.getEd25519PublicKey());
accts.add(addr3.getEd25519PublicKey());
// create the MultisigAddress object
MultisigAddress msig = new MultisigAddress(version, threshold, accts);
System.out.printf("msig address: %s\n", msig.toAddress().toString());
// Construct transaction with sender as address of msig
Transaction msigPayTxn = Transaction.PaymentTransactionBuilder()
.sender(msig.toAddress())
.amount(1000)
.receiver(acct1.getAddress())
.suggestedParams(sp)
.build();
// For each subsig, sign or append to the existing partially signed transaction
SignedTransaction signedMsigPayTxn = acct1.signMultisigTransaction(msig, msigPayTxn);
signedMsigPayTxn = acct2.appendMultisigTransaction(msig, signedMsigPayTxn);
Response<PostTransactionsResponse> msigSubResponse = algodClient.RawTransaction()
.rawtxn(Encoder.encodeToMsgPack(signedMsigPayTxn)).execute();
// Get pre-defined set of keys for example
_, pks := loadAccounts()
addr1, _ := types.DecodeAddress(pks[1])
addr2, _ := types.DecodeAddress(pks[2])
addr3, _ := types.DecodeAddress(pks[3])
ma, err := crypto.MultisigAccountWithParams(1, 2, []types.Address{
addr1,
addr2,
addr3,
})
if err != nil {
panic("invalid multisig parameters")
}
fromAddr, _ := ma.Address()
// Print multisig account
fmt.Printf("Multisig address : %s \n", fromAddr)
package main
import (
"context"
"crypto/ed25519"
"fmt"
json "encoding/json"
"github.com/algorand/go-algorand-sdk/client/v2/algod"
"github.com/algorand/go-algorand-sdk/crypto"
"github.com/algorand/go-algorand-sdk/mnemonic"
"github.com/algorand/go-algorand-sdk/transaction"
"github.com/algorand/go-algorand-sdk/types"
)
// UPDATE THESE VALUES
// const algodAddress = "Your ADDRESS"
// const algodToken = "Your TOKEN"
// sandbox
const algodAddress = "http://localhost:4001"
const algodToken = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
// Accounts to be used through examples
func loadAccounts() (map[int][]byte, map[int]string) {
// Shown for demonstration purposes. NEVER reveal secret mnemonics in practice.
// Change these values to use the accounts created previously.
// Paste in mnemonic phrases for all three accounts
mnemonic1 := "PASTE phrase for account 1"
mnemonic2 := "PASTE phrase for account 2"
mnemonic3 := "PASTE phrase for account 3"
// never use mnemonics in production code, replace for demo purposes only
mnemonics := []string{mnemonic1, mnemonic2, mnemonic3}
pks := map[int]string{1: "", 2: "", 3: ""}
var sks = make(map[int][]byte)
for i, m := range mnemonics {
var err error
sk, err := mnemonic.ToPrivateKey(m)
sks[i+1] = sk
if err != nil {
fmt.Printf("Issue with account %d private key conversion.", i+1)
}
// derive public address from Secret Key.
pk := sk.Public()
var a types.Address
cpk := pk.(ed25519.PublicKey)
copy(a[:], cpk[:])
pks[i+1] = a.String()
fmt.Printf("Loaded Key %d: %s\n", i+1, pks[i+1])
}
return sks, pks
}
// PrettyPrint prints Go structs
func PrettyPrint(data interface{}) {
var p []byte
// var err := error
p, err := json.MarshalIndent(data, "", "\t")
if err != nil {
fmt.Println(err)
return
}
fmt.Printf("%s \n", p)
}
func main() {
// Initialize an algodClient
algodClient, err := algod.MakeClient(algodAddress, algodToken)
if err != nil {
return
}
// Get network-related transaction parameters and assign
txParams, err := algodClient.SuggestedParams().Do(context.Background())
if err != nil {
fmt.Printf("error getting suggested tx params: %s\n", err)
return
}
// comment out the next two (2) lines to use suggested fees
// txParams.FlatFee = true
// txParams.Fee = 1000
// Get pre-defined set of keys for example
sks, pks := loadAccounts()
addr1, _ := types.DecodeAddress(pks[1])
addr2, _ := types.DecodeAddress(pks[2])
addr3, _ := types.DecodeAddress(pks[3])
ma, err := crypto.MultisigAccountWithParams(1, 2, []types.Address{
addr1,
addr2,
addr3,
})
if err != nil {
panic("invalid multisig parameters")
}
fromAddr, _ := ma.Address()
// Fund account
fmt.Println("Fund multisig account using testnet faucet:\n--> https://dispenser.testnet.aws.algodev.network?account=" + fromAddr.String())
fmt.Println("--> Once funded, press ENTER key to continue...")
// fmt.Scanln() // wait for Enter Key
toAddr := addr3.String()
var amount uint64 = 10000
note := []byte("Hello World")
genID := txParams.GenesisID
genHash := txParams.GenesisHash
firstValidRound := uint64(txParams.FirstRoundValid)
lastValidRound := uint64(txParams.LastRoundValid)
var minFee uint64 = 1000
txn, err := transaction.MakePaymentTxn(
fromAddr.String(),
toAddr,
minFee, // fee per byte
amount, // amount
firstValidRound, // first valid round
lastValidRound, // last valid round
note, // note
"", // closeRemainderTo
genID, // genesisHash
genHash, // genesisHash
)
txid, txBytes, err := crypto.SignMultisigTransaction(sks[1], ma, txn)
if err != nil {
println(err.Error)
panic("could not sign multisig transaction")
}
fmt.Printf("Made partially-signed multisig transaction with TxID %s: %x\n", txid, txBytes)
txid, twoOfThreeTxBytes, err := crypto.AppendMultisigTransaction(sks[2], ma, txBytes)
if err != nil {
panic("could not append signature to multisig transaction")
}
fmt.Printf("Appended bytes %x\n", twoOfThreeTxBytes)
fmt.Printf("Made 2-out-of-3 multisig transaction with TxID %s: %x\n", txid, twoOfThreeTxBytes)
// We can also merge raw, partially-signed multisig transactions:
// otherTxBytes := ... // generate another raw multisig transaction
// txid, mergedTxBytes, err := crypto.MergeMultisigTransactions(twoOfThreeTxBytes, otherTxBytes)
// Broadcast the transaction to the network
txid, err = algodClient.SendRawTransaction(twoOfThreeTxBytes).Do(context.Background())
// Wait for confirmation
confirmedTxn, err := transaction.WaitForConfirmation(algodClient,txid, 4, context.Background())
if err != nil {
fmt.Printf("Error waiting for confirmation on txID: %s\n", txid)
return
}
fmt.Printf("Confirmed Transaction: %s in Round %d\n", txid ,confirmedTxn.ConfirmedRound)
txnJSON, err := json.MarshalIndent(confirmedTxn.Transaction.Txn, "", "\t")
if err != nil {
fmt.Printf("Can not marshall txn data: %s\n", err)
}
fmt.Printf("Transaction information: %s\n", txnJSON)
fmt.Printf("Decoded note: %s\n", string(confirmedTxn.Transaction.Txn.Note))
}
# Sign cumulatively
$ goal clerk multisig sign -t multisig.txn -a $ADDRESS1
$ goal clerk multisig sign -t multisig.txn -a $ADDRESS2
# Or sign two separate files and merge
$ goal clerk multisig sign -t multisig1.txn -a $ADDRESS1
$ goal clerk multisig sign -t multisig2.txn -a $ADDRESS2
$ goal clerk multisig merge multisig1.txn multisig2.txn --out=merged.stxn
# algokey takes account-level mnemonics at the time of signing
# requires the transaction to include the msig struct before signing
$ algokey multisig --txfile=multisig1.txn --outfile=multisig1.stxn -m <25-word-mnemonic>
$ algokey multisig --txfile=multisig2.txn --outfile=multisig2.stxn -m <25-word-mnemonic>
# Use goal to merge the the *.stxn files.
Logic Signatures¶
Logic signatures authorize transactions associated with an Algorand Smart Signature. Logic signatures are added to transactions to authorize spends from a Contract Account or from a Delegated Account.
A full explanation of Logic Signatures can be found in the Algorand Smart Contract Usage Modes Guide.
Related How-To